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CHAPTER 7

Identifying a Source of Financial Volatility
Douglas G. Steigerwald and Richard J. Vagnoni

WRTRALT

i gnmarv goal is o develop and analyze a dynarmic cconomic model that takes into account

rul sources of information-hased trade — the markets for a stock and options on that stock.

Wi »iudy identification within the model. paying particular attention to assumpuons about the

went trader arrival process. We also derive the stochastue properties of trade-by-trade decisions

d prices. Finally, we aggregate trade-by-ur wle quantities and to show that data generated by the
wnlel is consistent with empirical benchmarks from exchange data.

|, INTRODUCTION

Much of Tom Rothenberg’s long and insightful career has focused on iden-
lication in econometrics. The theme is perhaps most evident in Rothenberg
(1973, which has long been the standard for identification in simultaneous
squation models. We analyze a market microstructure model, paying particular
Aiention to issues of identification. (The term microstructure refers to study of
swset markets at the highly disaggregated level corresponding to the arrival of
individual traders. ) Working from the asymmetric information model in Easley,
() Hara, and Srinivas (1998), we first detail the assumptions needed to identify
the parameters. We then derive the stochastic properties of trades and squared
price changes for each market and the dynamic pattern of trade across markets.
Finally, we use the methods in Kelly and Steigerwald (2004) to construct aggre-
sute trades and squared price changes and compare these to empirical bench-
marks. Together. these results provide a theory-based link between asymmetric
wformation, the behavior of market participants. and stochastic volatility.

In Section 2 we first present a model of informed trade in stock and options
markets and the resultant likelihood function needed to estimate the parameters.
Parameter identification requires specification of the frequency at which traders
sirive. We show how misspecitication of the arrival frequency imparts bias. In
smuticular. we tind that arrival frequency misspecification leads to downward
sias of informed trade frequencies. Even with correct specitication of the arrival
trequency. the likelihood function is sensitive o aggregation and we pinpoint
hie difficulty. Empirical identification requires a further assumption, by which
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trades are assigned 1o a quote. Estimates of the accuracy of the assignment rules
fvpreaily tind an error rate of 13 percent. We determine the bias that ar

>$ from
such an error rute and again find that informed trade frequencies are biased
downward,

ik %cc{écm b

© focus on the dynanie pattern ol trade within und across mar-
Kets, We dertve (in Theoremn 3.1) how frequently. in equilibrium, the informed
trade in the options murket. Our results nest thow of Easley et ul. (1998) who
amphonty derve canditions under which the informed trade with constant fre-
guency in the options market. We next derive the properties of trade hy»trade
price changes. Becanse informed traders may choose to irade in the options
market. option trades can convey information about the stock price (Black
19750 B u,k 1993 Biais and Hillion 1994). As a result, o )Iim’m are not redun-
dunt assets as assumed by the Black-Scholes pricing mnud 3lack and Scholes
)73 . we show that the (condi-
Nmmh variance of price changes in a market is bounded by the squared bid—ask

spread for that market. As trade reveals int “m”num'(m the bid—ask spread shrinks,
thereby reducing the conditional variance, The evolution of the bid—ask spread
ariance, although not specifically of

3. We detai] these linkages and., in Theorem 3.3

feads to autocorrelation in the umdltmnal
the fm'm mmic}gd in i GARCH process.

udy he behavior of imdcs and prices over calendar periods. Three empirical
features of stock market data form natural benchmarks for testing the model.
Fhere s strong evidence of serial correlation in calendar period squared price
changes and in the number of trades across calendar periods. and the serial

correlation in the number of trades tends to be larger and to diminish more.

stowly than serial c(;«rreiatioﬂ i squared price changes (Andersen 1996: Harris
PORT: Steigerwald 1997y We first show that both trades (or trading volume)
and sguared price changes are positively correlated. Because the conditional
vartanee of trade-by-trade price changes shrinks as information is revealed
through trading, while trade decisions are unaifected, the serial correlation in
frades s farger and tends to diminish more slowly than does the serial correlation
i syuared price changes.

I IDENTIFICATION IN A MICROSTRUCTURE
MODEL WETH OPTIONS MARKETS

L

consider a model with markets for a stock and for call and put options on
the xmckt We base our dual-market. sequential-trade, asvinmetric information
model on the market microstructure models of Fasley and O'Hara (1992):
Easley et al. (1998). Full details of the model and the derivations that follow
are contamed in Steiegerwald and Vagnoni (2001)

Fride i the stock and options markets occurs over a sequence of trading davs,
mdexed by m. On trading day . the stock realizes some per share dollar value.
ziven by the random vartable V,

Phe stock takes
tth positive prob zhzm\ 3. Prior to the commencement

- §(‘/ Uy } ih!zc LBy
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of trading on day m. informed traders receive a randomly determined signal,
S,.. about the value of the stock on m. This signal takes one of three values,
Sw € sL, 5.5 51 The informative signals, 57, and sy, reveal the true value of
the stock. The uninformative signal, 5. provides no information regarding the
irue value of the stock. informed traders fearn the true value of the stock with
probability & > 0. Proportion e of the traders receives the signal, characterizing
the universe of informed traders. The proportion of traders that does not receive
the signal characterizes the universe of uninformed traders. Neither market
maker is privy to the signal. Atthe end of cach trading day, the signal is revealed
to the market makers and uninformed traders and, hence. all agree on the value
of a share of the stock.'

The market makers set an ask and a bid. collectively termed the quotes, for
cither one share of stock or an option contract that conirols A > | shares of

the stock. Each option is of the European type — precluding the possibility of

exercise prior to the end of the trading day — and expires upon revelation of the
signal. Consider the call option, which provides the owner with the right to buy
one share of the stock for a specified strike price, k¢, with k¢, € [v,,m, v, 1
from the call option writer at the end of the trading day. The value of the cull

option. V¢, 1s max (Vo — K¢ 0}.
As all traders are risk neutral, informed traders will trade only if they re-

ceive an informative signal. For example., if Sy = 81, then an informed trader

~implements one of three possible “bearish” strategies, selling short one share

of the stock with probability €. writing & call options with probability €/5¢,

: ~ or buying A put options with probability €740 = | —e;p —€r1BC- Conditional
* on receiving an informative signal, the informed trader employs the strategy

that provides. the largest net gain. Uninformed traders are assumed to trade

for liquidity reasons and not speculation. The uninformed trade with positive

frequency in cach market, For example, proportion €y g potentially sells the

stock short and proportion ey ac potentially buys A call options. The sum of
* the positive frequencies in each market is €. thus | — € is the proportion of the
uninformed traders that never trade.

Traders randomly wrrive to the markets one at a ume, so we index them by
their order of arrival, i. The ith trader arrives, observes the quotes. and makes
a wrade decision, D;. The random variable, D;, takes one of seven values. For
example, if trader i buys the stock at the ask. A;, then D; = da. If trader i writes
2 call options at the bid, Be,, then D = dpe. I rader § elects not 1o trade, then
D; = dy. We define the sequence of trading decisions on m as { Di ;. Given
all publicly availuble information prior to the commencement of trade on m, Zo,
we specify the publicly available information set prior to the arrival of trader
i+ lonmas Z;, with Z; = {Zi. Dilh_y-

The information set, Z;, is shared by the market makers and all traders. The
market makers (and uninformed graders) perform Bayesian updating, by which

i A trading day capiures the interval vver which asymmetric information due to a particular signal

persists in the markets and 15 not necessarily coincident with a catendar day.

it .

Ak m s iedn v
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they learn the signal received by the informed. After witnessing the ith trading
decision, the market makers’ heliefs regarding the signal that the informed
traders received are

PUSy = 5,120 = and PUS, = 55120 = y,.

Lach trading decision ~ even if the decision is not to trade
;1h(>ut the signal received by the informed traders,

Juotes are determined by two equilibrivm conditions. The Hrst condition is
zhat a market maker earns zero expected profit from each trade. From the zero
expected profit condition it follows that the quotes are equal to the expected
value of the asset conditional on the trade. The second condition is that the
mformed will trade the asset that offers the highest net gain. From the second
condition it follows that the quotes are set so that an infor med trader
cyual net gain from each possible trade.

The microstructure model vields the likelihood of each trade decision 1,
as a function of the parameters & = (. 5. €. 6), where € is the vector of frade
probabilities (for both the informed and uninformed) for each trade decision.
As trader arrivals are independent. the likelihood for a sequence of » arrivals is

—conveys information

rearns an

Labl Dy = dy. Dy = dyy =T PUD; = dijd).

From the structure of the model. the probability of each trade decision is straight-
forward. For example, the probability of a trade at the ask in the stock market

ik

PO = dy by = 00 — Siore g + (1 — aiep ] + 0801 —a)epy

=l =M - ey .

Woa =ty ng, ... ny)is the vector of trade counts that correspond 1o each

trade decision. then the corresponding value of the likelihood function is

N IS, 1 " ipp 4 o % 12
LADY = 000 = 8y piy - poh - PVIc - Patie s PUs - POAS IO —~ ay (1 — ey

Bt i
¢ Popp

T e mife i P " Hapog oy
= Epyy ;;“i; R AR Piap D =@l — e

R #oyg ity Ty itap . v . v
=) g Al Posce  Poke - Pome - Podp e+ (1 — o) (1 — €)™
where py; =aer; + (1 —alep; and po; = (1 — w) ey with j indexing trade

decisions,

Two assumptions are needed to construct the sequence of trade decisions
that wdentify the parameters. The first axxumpiion wentifies the length of time
that corresponds to a decision not to trade.~ As the no-trade decision is designed
foisolate periods in which information is not present, the assumption is needed
to wdenuty o and e We first investigate how nisspecification of the no-trade
mterval alfects estimation. Let ¢ correspond 1o the true fength of the interval

and let & correspond to the assumed length of the interval. Because ail rades

specifving the no-trade mterval is cqunvalent to speariving the frequency of trader arrivals.

¢ st decline.

*......,...._..« —
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ste observed, only ny — the number of no-trade decisions, is affected by the
mmpauimatmn If ¢ > ¢, then the number of no trades is biased upward. while
if ¢« ¢ the number of no trades is biased downward (as a sequence of actual no-
irude decisions are required to record an observed no trade). Given the structure
of the likelihood function, it 1s not straightforward to analytically determine the
ias on individual parameters. To measure the bias, we simulate data under ¢
ad construct estimators under ¢. We use the equal payoff condition (derived
Lytery, under which the uninformed trade ’rcquencv in each market 1s £ while
ihe informed trade frequency in each market is 5. For the population model we
use parameter values that correspond to csnmates in Easley. Kiefer, and O’Hara

£1997): news arrives on half of the trading days (9 = .5), bad news is slightly
more prevelant than good news (5 = .63, 20 percent of traders are informed
{1 = .2), and the overall frequency of trade by uninformed traders is 80 percent
{¢ = .8). The population model assumes a trader arrives every minute during
# six-hour-trading day, for thirty trading days. The estimates are constructed
under each of the alternative assumptions that a trader arrives every two, three,
four, or five minutes.

As revealed in Panel A of Table 7.1, incorrectly specifying the no-trade
interval underestimates the impact of informed traders (« is biased downward
and € is biased upward). The parameters governing behavior at the daily level,
# and 8, are largely invariant to misspecification of the no-trade interval. For the
vase in which the specified no-trade interval is too long, the number of recorded
1o trades declines and days with and without news become more similar. To
account for the greater relative trequency of trades on all days, € must increase.
To account for the infrequency of no-trade decisions on days without news,
a must decline. If the specitied no-trade interval is too short, the number of

Table 7.1. Impact of misspecification on parameter estimates

Panel A

“é()—trade interval length @ € 0 5

I minute 2017 7982 4667 5714
L0082y (U059) L0913) .1433)

2 minutes 1633 8360 4667 5714
[RIIDAT 064y [ R AT 109

% minutes 1428 83383 4666 5714
CO1H08) 00643 L 13%8) 1420

4 minutes 1238 8767 667 5714
COHTY COU6T) (.2043) (.1426)

5 minutes NERE: BEY9 4672 53712
L0104 {0063 120110 140%)

Panel B
15% Trade misclassification 1862 7954 1667 5714
1U0Y3)Y L063) 021y (.1435)
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recorded no trades increases and, again, days with news become more similar
to days without news. Because the relative frequency of trades has declined
on all days. € decreases. To account for the infrequency of trade decisions on
days with news, « declines. Incorrect specification of the no-trade interval, in
cither direction, biases the estimator of & downward and makes the presence of
informed traders more difficult to detect.

Even if the no-trade interval is correctly specified, empirical identification
may be problematic. The analysis of a related likelihood in Easley et al. (1997)
is confined to a stock that is not heavily traded. For more heavily traded stocks,

numerical difficulties prevent analysis. Rewriting the likelihood makes investi- -

gation of the numerical difficulties quite straightforward. Under the equal payotf
condition, for which py; equals py = (1 — ) £ for all j, the likelihood is

) N Haknaetage
Py~ = o - ) (:L + 1)
S3po

« R petrap c o iw
wes(mw) +<1»@)(w+1) :
2P0 4

The issue concerns the three terms ( {;’;{; A Pyratnactnge (g‘w‘;; 4 Dytstrsctnae
and ( E’« + 1) For frequently traded stocks, the observed value of trade deci-
stons 1s quite large. As all three terms are greater than one, these terms dominate
the likelihood function when raised to a large power and render the likelihood
numerically unstable. (The most common difficulty is simply overfiow, the
calculated value exceeds the largest number the computer is able to store.)
Figures 7.1 and 7.2 reveal the issue. In Figure 7.1, a trader arrives every minute
and with 360 wrader arrivals in one day no numerical problems are encountered.
In Figure 7.2, a trader arrives every twenty seconds, with 1,080 trader arrivals
numerical difficulties are prevelant.’ Because the three terms are increasing
functions of « and decreasing functions of e, the likelihood function is cor-
rectly computed only for smaller values of & and larger values of €. For the
population values = .2 and ¢ = .8 the likelihood function cannot be evaluated
with an arrival frequency of twenty seconds.

The second assumption regards the classification of trades. Within the model,
all trades occur ata quote. In practice. many trades are recorded at prices between
the quotes. To empirically identify the model, all trades must be assigned to a
yuote. While there are several assignment rules popular in the literature, each
of the rules has an estimated error rate of 15 percent. To understand the impact
of the misclassification of trades, we randomly misclassify 15 percent of trades.
Panel B of Table 7.1 contains the results. Estimation of ¢ and § is again largely
unaffected. As misclassification of trades does not alter the relative frequency of
trades, estimation of ¢ is also unaffected. Yet random misclassification of trades

' For case of viewing, we set the numerically unstable values w an arbitrarily <small value. to
cmphasize that the empirical likelihood is essentially flat.
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Figure 7.1, Log-likelihood function for 360 arrivals in a trading day.

does impact estimation of «. On days without news, random misclassification
is equally likely to affect trades at either set of quotes. Yet on days with good
news, for which there are more trades at the ask. misclassitication is more
likely to affect trades at the ask quotes. Similarly, on days with bad news.
misclassification is more likely to affect trades at the bid quotes. As a result,
the imbalance of trades (the number of ask trades minus bid trades) on news
days is reduced and the presence of informed traders are again hidden.

3. INTRA-TRADING DAY DYNAMICS

The evolution of the quotes over the course of the trading day reflects the
information revealed through trading. We show that at cach point in the trading
day the quotes have bounds that reflect the information asymmetry facing the
market makers. We then study the frequency with which the informed trade
in each market. We show that informed trade frequency in the options market
generally declines over the course of the trading day and we derive the effect of
the underlying parameters on this frequency. In doing so. we demonstrate that
the separating equilibrium derived in Easley et al. (1998). in which the informed
trade only in the options market. will not generally prevail over an entire trading
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day. We also show how the bid-usk spread changes as the informed trade
frequencies change. The spread in the options market declines more rapidly
than does the spread in the stock market. reflecting the flow of informed traders
into the stock market. Finally, we derive a condition under which the informed
trade with constant frequency in the options market over the course of the
trading day: constant informed trade frequencies greatly simplify the analysis
of calendar period aggregates in Section 3.

In parallel to the opening quotes for the call. the ith-trade quotes for each
asset are obtained as the solution to the zero profit condition with the relevant
mformed trade frequency. For example, the ith-trade quotes for one share of
the stock are

(- “)[”Hw — LV, Zio )J (¢seua + APe€ a0+ Mp‘pé’!;ﬁp)
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m these equations it is easy 1o see that each set of quotes is bounded by
2 respective limit values of the asset, with strict inequality unless the market
suker 1s certain the informed learn the true value of V,,, (no adverse selection).
We also find that the quotes for the stock and the options bound the respective
capected values of the assets, which illustrates the spread generated by the
market makers i an effort to offset expected losses to traders with superior
sformation.

Ihe quotes process is driven by x; and v;, which are the market makers’
heliefs about the signal received by the informed traders. The beliefs evolve
vording to Bayes” Rule and are determined in large part by the equilibrium in-
formed trade frequencies. In general. informed trade frequencies vary through-
out the trading day. The dynamic behavior of the options market trade frequency
I intuitive: as private information is revealed through trading, the advantage
pnined by the informed through trade in the options market declines. To make
the analysis of variable informed trade frequencies concise, we focus on an em-
sirically relevant case in which options offer leverage and the option payoffs
are symmetric, (Mi p, — v, ) = Alvy, — ke, ) = AP

"

Theorem 3.1. If the options offer greater leverage and have symmetric pavoffs,
then the informed rade frequencies behave in the following wavs:

(a) As hincreases, the informed are less likely to trade in the stock market.
As « increases, the informed are more likely to trade in the stock
market.

(h) Ax learning evolves, the informed flow from the options market to the
stock market. The rate of flow declines over the course of a trading
day. The rate of flow also declines us « increases.

(c¢) Informed trade frequencies in the option market are always positive.
If the uninformed trade each usset with equul frequency, then € ; ¢, =
Erpp, > €ra, and €;pe, = €pap, > €5,

(d) The ith informed trade frequencies in the stock market are positive if,
for j = H.L,

(vy —v ’ 1 I )
A < W[{m 1””) (} 4 ‘ Mbjj~l ) 5
Jé I —~we;

with €y = epac +veppp, €1 = €ype +€uap, Dyiat = Yir, and
bpioy =X

Proof. See Appendix. n

An increase in the proportion of informed traders reduces the depth (the ratio
of uninformed traders to informed traders) of the options market, which in turn
makes the stock market more attractive to imformed traders, as detailed in (a).
o understand the dynamic pattern revealed in (H), consider a day on which
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Sw = s5y. As the informed trade and reveal their information, v; increases. As

vi increases, the gains to trade on information shrink, as does the advantage -

from trading in the options market. Hence, over the course of 4 trading day the
informed flow from the options market to the stock market. As the updating
of v slows over the course of a trading day to reflect the reduced information
content of trades, so too does the rate of flow of informed traders. In similar
fashion, as « increases, the information gain from each trader increases, so
higher values of @ lead to faster learning and greater attenuation of the rate of
flow of informed between markets over the course of a trading day. While the
mformed flow from the options market to the stock market over the course of
a trading day, if the uninformed are equally likely to trade in each market then
the informed trade frequency is higher in the options market uniformly over the
trading day, as stated in (¢).

Leverage attracts informed traders to the options market. If A exceeds the
separating bound in (d), then the frequency of informed trade in the stock
market is zero and the equilibrium separates the markets in which the informed
trade. As either o decreases or €; increases. the informed are able to hide
more easily in the options market. so the separating bound in (d) decreases
and informed trade is more likely to occur only in the options market. Because
A is fixed over the course of a trading day while b; evolves with the trade
flow. it will generally not be the case that a separating equilibrium exists in all
periods.

The bid-ask spread reflects the dynamic pattern of informed trade frequen-
cies. To illustrate the dynamic pattern of the spread, we simulate the arrival of
traders over the course of 1.000 frading days on which S,, = s;;. We set the
mformation advantage of the informed at S percent of the initial value of the
asset, so vy, = 105, v, = 95, and § = .5. (We ensure that option payoifs are
symmetric and set k¢, = v, andkp, = vy . The greater leverage afforded by
options is then captured by 4 > 1.*) We further suppose that the uninformed
are equally likely to trade each asset, so that the informed trade frequencies,
and hence the spreads, are identical for the two options. Finally, we suppose
thate = .2 and € = .75, noting that the essential features we report hold as «
and € vary over {0, 1| In Figure 7.3 we present the average bid-ask spread over
the course of a trading day. First, as A increases the adverse selection problem
in the options is exacerbated and forces the market maker to widen the bid-ask
spreads for the call and put options, while the adverse selection problem in the
stock is mitigated and allows the market maker to reduce the spread for the
stock. As the trading day evolves the options spread declines more rapidly than
the stock spread. reflecting the movement of informed traders into the stock
market.

If the payoft from all three assets is equal, then the informed trade with
constant frequency throughout the trading day. Because constant informed trade

' For the given parameter values, the separating bound is 1.2,
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Figure 7.3. Bid-ask spreads with (1) fora = .2 and € = 75.

frequencies greatly simplify analysis when trade-by-trade variables are aggre-

- gated into calendar periods. we make note of the condition.

- Equal Payolf Condition. The options leverage and strike prices satisfy

vy, = vr, = Moy, = Ke,) = MKp, =)

The constant informed trade frequencies mirror the behavior of uninformed

traders in that the informed and uninformed trade with identical relative fre-
quency in each market
€rra 1A

fra = . €A, = .
" epatepac Feppp cyat+euac +eypr

and
cupp

€rpp, = .
€uateuac Heupp

If the informed trade frequencies are constant, then ratios of x; and v; are
recursive. (If the informed trade frequencies are variable, then it is difficult
to obtain a recursive structure.) With constant informed trade frequencies we
establish that if there were an infinite number of trader arrivals on m. then
murket makers would learn the signal, §,. As a result, the quotes for each asset
converge to the strong-form efficient value of that asset. reflecting both public
and private information. As transaction prices are determined by the quotes.
these prices also converge to the respective strong-form efficient values of the

issets.
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Theorem 3.2, Jf the equal pavoff condition is satisfied. then the sequence of
quotes and, hence, the sequence of transaction prices for each asset converge -

almost surely to the strong-form efficient value of that asset at an exponentiul
rate. Specifically, the following results obtain as | — 0,

e o @5 e 2 @3 @y as
If S = s, then x; 25 |, Vi = 0,30 A, — U, Bi —= v, As g
Y Ay oy
[3’( S 0. A P Kop Ur . and H;{ e Kp, by .-
. N oy (253 RS s iy
If Sy = sy then v, -5 ) Vi 1,50 A — vy B 2N v, Ag, ——e
4y [£23 oy -
Up, — Kes B("' Uy K¢ A P 0 and B"’» — ().

I Sw =50 then x; = 0.y, > 0,50 A, 2 £V, B, <% gy Ac, -

s 1;

EVe,. Be, =5 EVe  Ap -2 EVp, and By % EV, |
Proof. See Appendix. =

ay

Convergence of the beliefs {xitispand {y, }iwo immediately implies that U, —
0. so that individual trader price volatility cE’mverges to zero.

Careful analysis of individual trader price changes reveals three interesting
features. First, option trades affect stock prices. Many standard option pricing
models assume that the option price is derived from the stock price. Such models
are misspecitied when informed trade occurs in option markets. Second. price
changes are predictable with respect to private information (in contrast ro public
information). Third, price changes are dependent and heterogenous, and the
conditional variance of each price change is bounded by the squared bid-ask
spread.

Price changes reflect public information after the decision of trader i but
hetore the arrival of trader i + 1. The stock price change associated with a
specitic trade decision for trader 7 is UdD; =d;)= E(V,|Z;_,. Dy =d;y~
EAV, 1252, Consider a trade at the ask in the stock. Because EV, 12 =
YV, ot vivg, (= x — v EV,, the stock price change is

A€y, Vig
The price change reflects expected learning from the informed: if the market

maker knows that the trader is uninformed, there is no learning from the trade
and the price change is zero.

UdDi =dy) = vy, ~ E(Vy|Zi_ 1))

Because informed trade occurs in the options market. options are not redun-
dant assets. If trader i elects to buy the call option contract. then
UiD; = dise) = [vp, — E(Vy|Zi )] ——TELAC I
At — A — <1y, 3 IR R I %
! 1“(1’),‘ I(I’,,;(Vf(f,ﬁ._,{)
Trade in an option affects the price of the stock.
Prices are predictable with respect o private information. Consider the stock
price change expected by an informed trader with S, = v,;. The informed
trader’s expectation differs from that of the market maker because the market
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maker is unsure of the signal. The stock price change expected by an informed
der is
EWAZi-)+all + yio) vy, — E(Vy|Zi1)]
A uxi g EV, — v ] > 0.
4 direct implication is that price changes are serially correlated with respect
private information. If' S, = s, then the serial correlation expected by an
siormed trader is

EUUZi oy, S o= sy) = Uy E (Uil 2y, S = sy) £ 0.
Price changes are conditionally heteroskedastic with

E ((/I,;ZZ:‘~]) = Pll), = d};}Z;M,)Uf(D; = d;)
1=ABAC.BC.AP.BP.N

\s the conditional heteroskedasticity is path dependent, we construct analytic
bounds. To do so, we use the effective bid-ask spread, A, — B;, which is the
maximum revision in price resulting from a trade. In almost all cases. A; — B;
It simply the bid—ask spread. If, however, a decision not to trade is quite rare
ind generally made by informed traders (when € is very large and o is very
small) then a decision not to trade can yield a larger price change than a decision
10 trade. Hence,

A= G = max o [Ai E (ValZioy. Di = d)]
= min (B E(ValZio Dy = dy)].

(The effective bid—ask spreads for the call option and the put option, A¢, — Be,
i Ap — Bp‘, are defined in the same way.)

We find that price changes conditional on public information are dependent
und not identically distributed, although they are mean zero and serially uncor-
related. An asset’s bid-ask spread drives the conditional variance of its price
changes, introducing autoregressive heteroskedasticity.

Iheorem 3.3. Price changes in economic time for each asset are mean zero
und serially uncorrelated with respect to the public information set. In addition
. - A ngd y : - a2

E(U Zi) < (A - Bj) . and E (Uf | Zis) < (A, = By)

Jorj=C, P.
Froof. See Appendix. n
‘The fact that the price change variance is bounded by the effective bid—ask

apread s an important component of the model. (This was shown in Kelly
and Steigerwald (2004) in the context of a single asset market.) Because the
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Table 7.2. E;»](UE{Z,@[) - E()(U,ﬂZ,’-.])

Trader I 2 3 +4 5 6 7 b Y 10
c=09 400 112 180 0250 023 005 004 0.0 00l 0.00
e=08 1506 121 181 020 020 004 00 0.0 000 0.00
e=07 1577 124 178 021 018 004 0.02 001 000 0.00
e=006 16353 122 165 023 015 004 om 0.00 000 0.00
=05 1734 117 143 024 0100 003 001 0.00 000  0.00
e=04 0823 111 LIS 027 006 004 001 0.00  0.00  0.00
e=03 1917 110 082 030 005 003 001 0.00 0.00  0.00
e=02 2019 120 052 031 004 001 00l 0.00  0.00 0.00

152029 022 005 000 000 000 .00 0.00

e=01 21.30

price uncertainty associated with informed trading widens the effective bid—~
ask spread, Theorem 3.3 suggests that price change behavior is systematically
different on days for which the signal is informative.

To show that the price uncertainty is greater on days with an informative
signal. we examine the market maker’s price uncertainty on a trading day with
S = Su. Ep( L’iZfZ[.,,), relative to the price uncertainty on a trading day with
Sm = 50, Eo( U,-J}ZP]). Straightforward calculations reveal that for the first
trader EH(Ufiz,,l) is larger than EQ(U,";Z,,,)_ To determine the sign of
E,;(U;’IZ,,I) — EU(Uf{Z,;,) for i > I, we study the behavior of Uf.ﬁ If o
is large, then learning is rapid and largely occurs with the first ten traders. For
illustration, in Table 7.2 we calculate E,,(UﬁlZ;A,) - E(;(’L’f!Zih, Jfora = 9,
from the exact distributions for U7 We first note that as traders arrive to the
market, the market maker learns and the relative price uncertainty decreases.
‘The speed of learning increases as the proportion of uninformed traders who
trade. €, decreases. Most importantly, the price uncertainty during a day with
an informative signal is always at least as large as the price uncertainty during
a day with an uninformative signal.

For smaller values of @. learning is slowed and reduction of an asset’s bid—
ask spread to zero requires many more trader arrivals. For trader i, there are 7/
possible values for U;. so calculation of the distribution of U/ 7 is cumbersome for
large 7. In Figure 7.4 we approximate Eq(UPZio1) = EoUHZi_ ) fora = 2,
with 1,000 simulations. We confirm the results of Table 7.2. Again, learning
is more rapid if the uninformed trade with less frequency. Also, we again find
that the variance of U; is higher, uniformly, on a day with an informative signal
than it is on a day with an uninformative signal.

4. CALENDAR PERIOD IMPLICATIONS

Aggregation of trader arrivals into calendar periods allows us to compare the
model with three empirical benchmarks. For constant informed trade frequen-
vies, we prove that the number of trades has posttive serial correlation in each

® We ussume that the equal payolf condition is satistied. with » = 1.
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Figure 7.4 I:fu(b’fé}j;.w;; - E”(UfiZ,x,_,,) with ¢ = .25 and € = .75.

market in accord with the first benchmark. We are also able to compare the
sertal correlation for different levels of aggregation and find that, generally, se-
rial correlation is higher for data gathered at five minute intervals than for data

- gathered at hourly intervals, For variable informed wrade frequencies, we derive

the formula for trade correlation and a sufficient condition for the correlation
to be positive. We then demonstrate that squared price changes are positively
serially correlated, in accord with the second benchmark. Last, we verify that
the model is able to satisty the third benchmark and produce serial correlation
in trades that is larger and diminishes more slowly than the serial correlation in
squared price changes.

To determine the serial correlation properties for calendar periods, such as
thirty-minute intervals. we divide each trading day into k calendar periods. We

* let ¢ index. calendar periods. To understand how ¢ maps into k and m, suppose

thatt = [, ..., n in which £ = | corresponds to the first calendar period on a
trading day. The sample would then consist of the vectors of & calendar periods
drawn from § consecutive trading days. Each calendar period contains n trader
arrivals (each trader arrival can be thought of as a unit of economic time). For
a given trading day, we have t = kn trader arrivals.

We first derive the serial correlation in trades (per calendar period). Under
the assumption of constant informed trade frequencies. we show that trades
are positively correlated. We also find that correlation in trades in an individual
market is less than the correlation in total trades. as segmenting trades into three
markets is not a scale transformation. (Our result for total trades corresponds to
the result reported in Kelley and Steigerwald (2004), in which only one market
is analyzed and so informed trade frequencies are constant.) The formula for
serial correlation directly links the parameters of the market microstructure
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model to the serial correlation pattern in trades. We analyze the more complex
case. in which the informed trade frequency is not constant, in Proposition 4.6.
The proposition contains both a formula for trade correlation and a condition
thatensures the correlation is positive. The intuition is strai ghtforward: Positive
trade correlation arises from the entry and exit of informed traders in response
to the arrival of private information.

For correlation in trades in a specitic asset, we focus on trades in the call
option /¢, (Analogous results hold for the stock and the put option.) Given 5
trader arrivals inr, /¢, takes integer values between () and 77 and $o is a binomial
random variable for which the number of trades in 7 corresponds to the number
of successes in y trials. For each period on trading day m we have

E(le,1Sm # s0) = n(l ~ @)eyc
Ht
+ Z @ [derpe, 4 (1 — erae, | = ne

i1t |

and
E ([(",me == »Y(}) =0l —a)eye = Hepe

In general, derivation of calendar period trades is quite complicated, as the in-
formed trade frequencies are not constant, To begin, we assume that equal payoff
condition holds so that the informed trade frequencies are constant throughout
the trading day. For simplicity, we assume that the uninformed trade frequencies
are equal across assets, so that each informed trade frequency is % We then
arrive at the following theorem and corollary in which r = 0, '

Theorem 4.4. Let the equal pavoff condition hold. Ifr <k then ¢, and I,
are positively serially correlated. If r > k, then I, and I, are uncorrelated.
For all v, we have

001 = 0)(40)° Tk - min (k.
(301‘(1'(1 /{:) — 3 I} nik,r) ‘
' Var (1) k
Proof. Straightforward, but tedious, caiculations yield the formula. n

The correlation in trades for each market is less than the correlation in total
trades. which as derived in Kelley and Steigerwald (2004) is

Cortl, ., 1) =

gL —H)(an)’ (’k 43')
—}

o~

N
The correlations differ because the probability of success for a binomial random
variable is not the scale of the random variable. so the variance of trades in a
specific asset is not a scale transformation of the variance of total trades.
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Covollary 4.5: Let r < k. The positive correlation between I, and ¢, i3
increasing in «. n, and k. The correlation is decreasing in r. The effects of
changing the market parameters, ¢ and 8, and of altering calendar period
saregation through © = ki, on the positive corvelation between 1o, and I,

e ambigrous.
froof. The comparative static results follow from differentiation. |

As either the frequency of informed trade, ¢, the number of trader arrivals,
s or the number of calendar periods, k. increases, the trade serial correla-
sion increases through the heightened impact of the entry and exit of informed
waders. In general. increasing the frequency of uninformed trade reduces serial
correlation. but if ¢ is close to one, then further increases in ¢ can amplify the
impact of the informed trader lows and increase serial correlation. Increasing
the probability of an informative signal. #, leads to higher serial correlation if
informative signals are rare. Perhaps most importantly for empirical work, we
can compare the serial correfation in hourly observations with the serial corre-
fation in five-minute observations. We find that serial correlation is generally
higher in five-minute intervals. but that the impact is not constant across r. For
longer lags. r > £ the serial correlation in five-minute data is unambiguously

B

igher than the serial correlation in hourly data.

For the case in which the informed trade frequencies vary over the course of
the day, we focus on trades in the stock market. /5. From the results of Section 3.
we deduce that the frequency of informed trade in the stock market rises as the
trading day evolves. We capture this evolution with a simple structure in which
secause informed trading frequencies are zero 1t S, = s)

E{lg Sy = so)=pmgylorj=1. .. k.
and
E(Is|Sm # s0) = pg; tor j=1..... k.
Cwith O < gy < Jlg < g = <0 < g

As any one calendar period is drawn at random from the periods of a rading
day, the unconditional mean of stock trades in a calendar period is

s
A

|
Ely = 0fisg + (1 = 0) g With g = + > g

F=i

fn deriving the serial correlation properties of { /5, } ;» an important condition
cmerges that ensures the correlation is positive.

Positive Trade Covariance Condition. The positive trade covariance condi-
sion is said to hold for period jowith U << j <k, if jis the smallest value of j

for which

fgj = Ml + (0= 1)ty



138 Steigerwald and Vagnoni

The positive trade covariance condition is most intuitive for the case £ = 2.
From the structure for the expectation of calendar period trades it follows
that ji ¢ lies below the unconditional mean and p g, lies above the uncondi-
tional mean. Suppose that 1 —~ 1 corresponds to the first calendar interval ~
the morning — of the trading day. For days without private news, we have
E(Is, 1Sn = 50) = gy and E(/5|S, = 50) = g Thus, for days on which
the morning observation tends to be below the unconditional mean, the after-
noon observation also tends to be below the unconditional mean. For days with
private news, we have E(Is |5, # s0) = g, and E(Ig]S,, # s0) = .
While it 15 clear that the afternoon observation tends to be above the uncondi-
tional mean, it is not clear whether E 75, < p,. If the positive trade covariance
condition holds (for period 1), then £/, < jig;. As a result, on days with pri-
vate news both the morning and afternoon observations tend to lie above the
unconditional mean and positive serial correlation is assured.

Proposition 4.6. Let r > 0. The covariance of calendar period stock trades is

[k — min (k. r‘}} e /gt (/‘LS” B /i.m) {” Si4r T Isn)
It i k ‘
+67 Y (fgx — 1 si) (Frgk = tesi o)

k

where the addition is wrapped at k. That is, if j +r > k, then replace j + r
with j 4 r — k.

If r = &k = 2 and the positive trade covariance condition holds for period
one, then

2 J O =) (rey = pgn) (tg — o)
2 07 (g~ ) (2 = psa) |

Cov(ls, .1y} = [

Proof. See Appendix. a

Serial correlation in squared price changes follows directly from serial corre-
lation in trades if trade-by-trade price changes are i.i.d. As trade-by-trade price
changes are noti.i.d, serial correlation in squared price changes is more complex
than serial correlation in trades. As a result. formulae linking the parameters
of the market microstructure model to the serial correlation are intractable.
Positive serial correlation in squared price changes will obtain if squared price
changes are higher in periods with higher trading (due to trade by informed
traders). We numerically construct the distribution of squared price changes
and show that expected squared price changes are higher in periods in which
the informed are trading. We then verity that squared price changes are serially
correlated. satisfyving the second benchmark.

—
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Figure 7.5. Behavior of expected squared price changes.

Serial correlation in an asset’s squared price changes stems from the infor-
mation content of trades. which in turn depends on the history of trades. Trade
decisions in early economic time contain more information than later trade
decisions. We define the (stock) price change over calendar period 1 on day
M s

1y
APi= Y Ui=E(ValZig) = E (Vi Zu-r) -

SR

A closed-form expression for the population moments of squared price
changes as a function of all of the underlying parameters is, in general, in-
imctable. To show that squared price changes have positive serial correlation,
we compare price change volatility on days with and without news. If price
vhange volatility is systematically higher on news days, then the random arrival
of information leads to positive serial correlation in squared price changes. To
lustrate, in Figure 7.5 we present expected squared price changes on trading
days with and without news. A trading day is assumed to consists of six calen-
lur periods, with two trader arrivals per period. (In detail, we consider only the

ock market and we set @ = .2 and € = .5.%) Expected squared price changes
sre uniformly higher on news days, which implies that squared price changes
are positively serially correlated. )

To show that squared price changes are positively serially correlated. we
vonsider a sequence of trading days in which # = .4 have news (with good and

* Extimates of o = .17 and e = .33 are obtained in Fasley et al. (19971 for an actively traded stock.
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Figure 7.6. Autocorrelation in squared price changes.

bad news equally likely). As is evident in Figure 7.6. the interplay between se-
quences of squared price changes that lie above the unconditional mean (from
news days) with sequences of squared price changes that lie below the uncon-
ditional mean (from days without news) leads to positive serial correlation in
prices. Further. the serial correlation declines as we move from lag | to lag 5.
as itis less likely that observations separated by five periods occur on the same
trading day. Because the news arrival process is independent across trading
days, it would seem that squared price changes are uncorrelated after lag 5.
Yet the nonstationarity of the process due to the signal arrival at the start of
cach trading day leads to correlation in squared price changes at longer lags,
which is more pronounced as 6 moves away from .5. The first hour of each
trading day is noisier than other hours. which leads to serial correlation at lag
6 (and at integer multiples of lag 6) that mirrors the cyclical effects in asset
market data.

To verify the third benchmark, we must show that positive serial correlation
i trades declines more slowly than does the positive serial correlation in squared
price changes. We alter the setting slightly to more closely approximate behavior
in a liquid stock traded on the NYSE. We define a trading day to be 32.5 hours,
which corresponds to a normal trading week on the NYSE. We measure price
and trades at thirty-minute intervals, so there are sixty-tive calendar periods in
atrading day. A trader arrives every tive minutes. so there are six trader arrivals
m each calendar period and 390 trader arrivals in a trading day. We simulate
195.000 trader arrivals over the course of 500 trading days.

The strike prices of the options are at their respective limits. Ke, = v, =95
and «p, = vy, = 105, so that 1 = [.15 captures the greater leverage of an
option. In Figure 7.7. we find the positive serial correlation in the total number
of trades declines more siowly than does the positive serial correlation in the
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Figure 7.7. Thirty minute autocorrelations (1 = 1.15).

wuared (stock) price changes. A similar picture emerges if we consider stock
iudes, rather than total trades. although the level of the trade correlation is
meduced.

5, CONCLUSIONS

We focus on the role of private information in the formation of securities prices.
Ihe model captures the link between asset prices and informational asymme-
iries among traders. given a stylized arrival process for private information. But
i sciual markets the arrival and existence of private information is not easily
vaptured, and the theoretical construct of a defined period over which asymmet-
1ie information persists is elusive. Moreover. the possibility of the occurrence
of multiple, overlapping information events introduces significant complexity.
ILis not surprising, therefore. that without knowledge of the existence of private
information it may be difficult to accurately detect such a pattern in actual data.
Further, there is widespread consensus that adverse selection problems faced
by market makers are not solely responsible for bid-ask spreads: rather, they
are the result of multiple additional factors, including market maker inventory
nsiderations and market power. Nonetheless. our simple economic model

_provides a theory-based explanation for observed empirical phenomena and. in

doing, establishes an economic foundation for the use of statistical models

employed to capture stochastic volatility in asset prices.
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APPENDIX

Proof of Theorem 3.1, We present the anal
togic holds for the femaining informed tra
stock markets, respectively,

(a) Calculation reveals that /s
e

qrs o B o 5 - : NN RV . <
== > Oforj mdexing a stock trade. The sign of Mi%’-L 18 the sign of
€val(vn, ~v,) ~ AB],

. . q N g : 8 o degy
which is negative by the greater leverage of options. The sign of «ﬁi is the
sign of

€vac +enpp) [AB ~ (vg, — ve, )],

which is positive by the greater leverage of options.

(b) The sign of “/ “ is the sign of the first displayed equation in (a) while

o g J:é!,\{'; " y ;i“ié’[,\(ﬁ' , ) y ) " s e . e

;he S1gns of ——=L and ivi ae AT€ Opposite to the sign of ——+. The sign of
Fepa o, S . 5 o 5
{««:— is the sign of the second displayed equation in (a) whil

) ‘ n,i""a»'M, . ) ol o s TErac

and G oy v are opposite t(? tt,)e sign of «3{—;«-&: ‘ o

(¢ Consider €1a¢,. This informed trade frequency is positive if

i

. AT
e the signs of T
¥y

€174 P\, (L’H” = f('(f‘ﬁ!) = (UHM - Uy ”

teynp l;\v (U}{”; e /C(‘m) A (I(pw = ”f»m)l = ().

The first term on the left side is positive because of the greater leverage of
options. The second term on the leftside is zero because of €qual option payoffs,
If the uninformed trade each asset with equal frequency, then the remaining
inequalities are deduced by inspection of the informed trade frequencies,

(d) For informed trade in the stock market, symmetric option payoffs imply
thate;, is positive if

wyiy vy, - v, ) (1= Ueyac +eppp) RLH - UL,,,) -~ M”] > {0

Because options offer greater leverage, the second term on the |

eft is negative
and the inequality becomes

avioi(vy, —v,) > (1 - aj(€y a0 + cupp) [Af - (va, ~ v, )],

from which the bound in the text is easily deduced. n

Proof of Theorem 3.2, The proof follows from calculations simil

ar to those in
Kelley and Steigerwald (2004) [Theorem 3.1 ]

Proof of Theorem 3.3. For the proof of Theorem 3.3. let D, represent D; =4,
We verify the theorem for U;; identical logic holds tor Ue and U p. Proof that

EXUAZ vy = 0 and E(U, UidZi_y =0 is straightforward. The upper bound

ysis for €rac, and €, . Identical
de frequencies in the options and

dey, N = 5 o 5 5
i > O for indexing an option trade and
dA *
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it the conditional variance is

E(UNZia) = >k
pe A MO BP
e
/'ab’;uil
+ P(Dy|!

o

JEAACBPN

L

;=B BC AP

< {i} —_ [IA(V)?:
< [{(Ai - Ew
= (/&; - gl)h3

where the first inequality follows from
mequality follows from B, < E (V,,|7

Proof of Proposition 4.6. We derive Ci
peneral covariance expression follows
lirst calendar period in a trading day ar
period. First note that

[E(Is, 14IN) -
Covily . 1¢) = E )
H (S S) +[E/3M**E(

or the sum of the conditional covarianc
means. Given that

E([‘» JN s I) :(L)/L“ + (]

and

E(Ig IN=2)=6ug+ (I

Because P(N = 1) = P(N =2) = |,

PAN=1)-Cov(l . Ig|N =1)+ p

+A[EU IsIN =2y — Bl |
which simplifies to

%19 (h =) (jrgp — jigy) {157 =
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Gw the conditional vartance is

E(WUAZi) = Y. PD)[A - EValZin]
JeAAC B )
F S P B - EVazon]

jell BC AP

+ POV E(VZi Dy — EV, 2, Dl

=Y P)[A - EWaz 0]
JAAC RPN
+ Z P(D;)[B; — E( V,.f,lZM)]l

i BHOAPN
- [it — E AV, 2 4)]3 + { }; — E(V,1Z, »»l)]l

i

< [(Ar = EValZion) = (B = EGVuZ )]

where the first inequality follows from the definition of A, and B; and the fourth
Cmequality follows from B, < E(V,,1Z) < A ]

Proof of Proposition 4.6. We derive Covilg g ) for k = 2. Derivation of the
general covariance expression follows similar logic. Let N = | it 1 — 1 is the
first calendar period in a trading day and N = 2 if t — 1 is the second calendar
period. First note that

[E(Is, 1IN} = E(Is IN)E (I5IN)]

Lov(ly L Ig) = E ) - .
, v (£l — E(Is IN)|[ETs, — E (I5IN)]

ot the sum of the conditional covariance and the covariance of the conditional
“means. Given that

E ([5 ][:"V = I) = ()/L'“ + (} — {'/)[lg() =— [{ (I‘»,lN - 2)
E(lg IN=2)=0u¢x+ -0 pug=E(g|N=1).
 Because P(N = 1) = P(N =2) = '; the conditional covariance is
PN =1)-Cov(ly IgIN =1)+ PIN =2)-Covlls, . I IN =2)
=4 [EUs I IN =1 — Ely, [IN = DEUGIN = D]
FL[EUS JIGIN = 21 = EUg, IN = DEU N = 2)]
which simplifies to

1000 =) (jgy — 1) (f52 = Man) -
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AS fgy < gy < Ly, the conditional covariance 1s unequivocally positive. The
covariance of the conditional means.

PIN=1)-[El; | — E(ly N = DI[EL, — E(g N = 1]
PPN =2 (Bl - Edg N = 2)] [E1s, — E (151N = 2)|

simplifies to

v My = ey N Jbes — 1o, )
0* (f_jl__liéé) (ff_‘;w_/fll) )
A S

AS Iy < L, the covariance of the conditional means is negative. We have
Cov (/g . Is) = 0if (1 — o) (/1 s1 7 fy) (/M‘z —H w) & f (Ms‘z - /LH}V- By
inspection. s¢¢, — Hoso > Mgy = pgy. 50 iLis enough to show that

4 0

(=) (g = p1gy) > 5 (2 — gy}

Now, as 2

(1gy = pig) =0 (ITs3 = 11y). this is equivalent to showing that

; LAy
(=) (g = jugy) > 5 (57 = gy .

From the positive trade correlation condition,

=) (peg) = pigy) > 6 (1 =) ({3 = jigy) .

Then

=0 (g — tsy) =6 (fgs ~ pe $1)

BRI (Fss — ﬂw) — i (fig; — /M‘r)»

The right side of the preceding inequality equals
& [(/’vs‘i = ftgy) — 0 (7217 - ﬂm” -

which is positive by the positive trade correlation condition. a

References

Andersen. T. (1996), “Return Volatility and Trading Volume:
Interpretation of Stochastic Volatilit

Back, K. 11993),
6, 435-72.

Biais. B.. and P. Hillion (1994). “Insider and Liquidity Trading in Stock
Markets.” Review of Financial Studies. 7. 74380,

Black. F. (1975), “Fact and Fantasy in the Use ot Options.

136116172,

Black, F.. and M. Scheles ( 1973). “The Pricing of Options and Corporate Liabilities.”
Jaurnal of Political Economy. § 1. 637-54.

An Information Flow
v." Journal of Finunce, 51, 169-204.

“Asymmetric Information and Options.” Review of Financial Studies,

and Options

YFinancial Analysts Journal,

Identifving a Source of

Fasley. D, N. Kiefer, and M. O"H:
Stock,” The Review of Financial
ev. Doand M. O Hara (1992,
uernal of Finance, 47, 577605
ey, D, M. O"Hara. and P. Srin
dence on Where Informed Trade
Harris, L. (1987), “Transaction Dat
fonrnal of Finaneial and Onunti
Kelly, D, and D. Steigerwald (2004
tic Volatility,” Studies in Nonline
Rothenberg, T. (1973, Efficient Est
tion Monograph 23. New Haven:
Swigerwald, D. (1997), “Mixtur
manuscript, University of Califor
Steigerwald. D.. and R. Vagnoni (2(
Volatility,” web manuscript, Univ




Identitying a Source of Financial Volatility [45

asley, Do, N. Kiefer, und M. O"Hara (19973, “One Day in the Lite of a Very Common

stock.” The Review of Financiul Studies, 10, 805-35.

¢y, D and M. O Hara 11992}, “Time and the Process of Security Price Adjustment,”

srnal of Finance, 47, 577-605.

ey, D, M. O"Hara, and P. Srinivas (1998), “Option Volume and Stock Prices: Fvi-
Jenee on Where Informed Traders Trade,” Journal of Finance. 53, 43163,

Hagris, L. (1987, “Transaction Data Tests of the Mixture of Distributions Hypothesis,”
fonrnal of Financial and Quantitative Anpalvsis, 22, 127-41.

y. D and D, Steigerwald (2004), “Private Information and High-Frequency Stochas-

tie Volatility,” Studies in Nonlinear Dyvnamics and Economitrics. 8, 1-30.

Hathenberg, T. (1973), Efficienr Estimation with A Priori Information. Cowles Founda-
tion Monograph 23, New Haven: Yale University,

ﬂlvi;’gerwald. D. (1997, “Mixture Models and Conditional  Heteroskedasticity,”
manuscript, University of California, Santa Barbara.

Steigerwald, Do, and R. Vagnoni (2001), “Option Market Microstructure and Stochastic
Volatility.” web manuscript, University of California. Santa Barbara.




